Protein Phosphatase 5 Contributes to the Overexpression of Epigenetically Regulated T-Lymphocyte Genes in Patients with Lupus

نویسندگان

  • D Patel
  • G Gorelik
  • B Richardson
چکیده

OBJECTIVE Lupus develops when genetically predisposed people encounter certain drugs or environmental agents causing oxidative stress such as infections and sun exposure, and then typically follows a chronic relapsing course with flares triggered by the exogenous stressors. Current evidence indicates that these environmental agents can trigger lupus flares by inhibiting the replication of DNA methylation patterns during mitosis in CD4+ T cells, altering the expression of genes suppressed by this mechanism that convert normal "helper" cells into auto reactive cells which promote lupus flares. How environmental stressors inhibit T cell DNA methylation though is incompletely understood. Protein phosphatase 5 (PP5) is a stress induced inhibitor of T cell ERK and JNK signaling in "senescent" CD4+CD28- T cells, also characterized by DNA demethylation and altered expression of genes that promote atherosclerosis. We tested if PP5 is increased in CD4+CD28+ T cells by oxidative stress, if PP5 transfection causes overexpression of methylation sensitive genes in T cells, and if PP5 is overexpressed in lupus T cells. RESULTS PP5 was found to be overexpressed in CD4+CD28+ T cells treated with H2O2 and ONOO- and in T cells from lupus patients. CONCLUSION The results indicate that PP5 increases expression of methylation sensitive T cell genes, and may contribute to the aberrant gene expression in CD4+CD28+ T cells that characterize lupus flares as well as the aberrant gene expression in CD4+CD28- T cells that promote atherosclerosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T Lymphocyte Apoptosis in Systemic Lupus Erythematosus Patients

Objective(s):  Apoptosis is a tightly regulated process and plays a crucial role in autoimmune diseases. Because abnormalities in apoptosis are considered to be involved in the pathogenesis of systemic lupus erythematosus (SLE), in present study we studied the apoptosis in T lymphocytes from Iranian SLE patientsat protein and gene expression levels for some molecules which are involved in apopt...

متن کامل

Influence of 1 Alpha, 25-Dihydroxyvitamin D3 on T Helper 17 Cells and Related Cytokines in Systemic Lupus Erythematosus

Background: Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease. Emerging data suggests that T helper 17 (Th17) cells play a pathogenic role in SLE and the increased number of these cells correlates with disease activity. In recent years, 1α, 25-dihydroxyvitamin D3 (1,25VitD3) has been considered as an immunomodulatory factor. Objective: To investigate the effect of 1,25VitD3...

متن کامل

Characterisation of an epigenetically altered CD4(+) CD28(+) Kir(+) T cell subset in autoimmune rheumatic diseases by multiparameter flow cytometry.

OBJECTIVES Antigen-specific CD4(+) T cells epigenetically modified with DNA methylation inhibitors overexpress genes normally suppressed by this mechanism, including CD11a, CD70, CD40L and the KIR gene family. The altered cells become autoreactive, losing restriction for nominal antigen and responding to self-class II major histocompatibility complex (MHC) molecules without added antigen, and a...

متن کامل

Promoter hypomethylation results in increased expression of protein phosphatase 2A in T cells from patients with systemic lupus erythematosus.

The catalytic subunit α isoform of protein phosphatase 2A (PP2Acα) activity, protein, and mRNA have been found increased in systemic lupus erythematosus (SLE) T cells and to contribute to decreased IL-2 production. The PP2Acα promoter activity is controlled epigenetically through the methylation of a CpG within a cAMP response element (CRE) motif defined by its promoter. We considered that hypo...

متن کامل

Evaluation and Comparison of the Expression Levels of the ZBTB16 (Plzf) and ZFP Genes and Alkaline Phosphatase in Three Cell Populations: Mouse Spermatogonial Stem Cells, Embryonic Stem-Like Cells (Es-Like), And Embryonic Stem Cells

Introduction: One of the vital enzymes during spermatogenesis, which is one of the pluripotency factors of stem cells and contributes to maintaining their pluripotency is alkaline phosphatase. ZBTB16 and ZFP proteins are critical elements in stem cells which are expressed in pluripotent stem cells and maintain their pluripotency due to their role in messaging pathways. Material & Methods: The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2016